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Abstract— The welfare of fetus in the womb of mother during 

pregnancy can be monitor by inspecting the fetal electrocardiogram 

waveform. In signal processing field, there are various techniques 

for analysing this purpose. Tracking fetal ECG (fECG) can provide 

important details for detecting fetal cardiac arrhythmia, thus 

treatment can be done as early as possible and hence we can 

diminish the mortality rate of babies. In this paper, a novel method 

for detecting cardiac arrhythmia in fetus in early stages of 

pregnancy and to classify the cardiac arrhythmia into five classes 

using enhanced blind source separation technique (BSS) is 

proposed. The scheme is based on WASOBI based BSS for pre-

processing and extraction of fetal ECG. Feature selection is 

manipulated using the Peak detection algorithm and Multi-class 

Support Vector Machine (SVM), is employed for the classification 

of fetal cardiac arrhythmia. 

Index Terms— Abdominal ECG Recordings, Fetal Cardiac 

Arrhythmia, Fetal ECG, WASOBI based BSS, EFICA, Multi-class 

SVM. 

I. INTRODUCTION  

Death can happen if there is severe conditions of 

abnormalities occur in heart, especially in case of cardiac 

arrhythmia in fetus. By verifying the ECG signal of adults, 

different types of cardiac arrhythmia can be detected 

According to [1] in every 2% of unselected pregnancies, fetal 

arrhythmias are recognized during the routine obstetrical 

ultrasound. The target of ECG signal handling is complex and 

comprises the improvement of estimation precision and 

reproducibility (between contrasted and manual measurements) 

and the extraction of data not promptly accessible from the sign 

through visual appraisal. 

Pre-processing stage is the major phase for detecting 

arrhythmia, because the detection accuracy depends on the 

accurate fetal ECG characteristics like peaks, intervals and 

amplitudes. The abdominal ECG recordings contains club of 

fetal ECG, mother ECG, noises caused by muscle activities, 

uterine movements, respiration and interferences. So the hectic 

task to filter these unwanted components and extract required 

feature that is the fetal ECG, fECG. In [2], current 

distinguishing modalities of fetal arrhythmia are explained. An 

electrocardiogram can be defined as, it is an advanced tool that 

records the electrical sign from your heart to check for different 

heart conditions like abnormalities and diseases. Cathodes are 

determined to your chest to record your heart's electrical signs, 

which cause your heart to throbformatter will need to create 

these components, incorporating the applicable criteria that 

follow. The signs are showed up as waves on an associated PC 

screen or printer. Human heart comprise of 4 chambers. The 

upper portion chambers are called Atrium (Auricles) and 

bottom portion chambers are called Ventricles. Each chamber 

has a valve, which can keeps blood from streaming in reverse. 

Diastole Phase and Systole Phase are the two stages in heart 

cycle. In the Diastole Phase, the heart is loose and the heart is 

loaded up with blood. In the systole Phase, the ventricles 

agreements and siphon blood into supply routes. Any 

deformities in these valves can likewise prompt cardiovascular 

sicknesses. 

In [3], prenatal diagnosis and perinatal management have 

been published by implementing M‐mode and Doppler 

echocardiography which helps in detailed analysis of fetal 

arrhythmia. Catheter-based intervention strategies [4], are 

discussed to halt the cardiac diseases. 

 
Figure.1: Schematic representation of an ECG curve 

 

An ECG signal can be segregated into heart beats. Each 

heartbeat includes five standard waves named with the letters 

P, Q, R, S and T. These waves exhibit the depolarization and 
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the re-polarization times of heart muscles [5]. These details are 

shown on Fig.1. 

In this paper, two BSS based algorithms were used to extract 

the fetal ECG. One is WASOBI based BSS algorithm and the 

other one is EFICA based BSS technique. The better 

performance is showed by WASOBI algorithm. The highlight 

of this algorithm is, it performs two functions, pre-processing 

and extraction process. The extracted fetal ECG is analysed for 

feature selection .The feature selection process is done by 

executing peak detection algorithm at which state machine 

logic is used. The cardiac arrhythmia classification process 

performed by using multi-class SVM classifier, in which five 

classification is done. 

 

II. LITERATURE SURVEY 

 

By filtering process the noises gets removed out. Numerous 

advanced procedures existed in biomedical world for 

preprocessing, like FIR and notch filters [6], Band pass filters 

[7], ICA algorithms [8], and combination of FIR and Principal 

Component Analysis method [9], Bayesian nonlinear filtering 

[10]. The next process is to extract the main element that is 

fetal ECG. Extraction process has many implementation. In 

[11], using Adaptive Noise Cancellation (ANC) technique, 

they implemented non-invasive fetal ECG extraction by 

applying combination of singular value decomposition (SVD) 

and smooth window (SW) methods. 

In [12], traditional ICA (Independent Component Analysis) 

is explained and from that Blind source subspace separation 

technique is derived to extract the fECG. In [13],fetal ECG 

extraction is done by using improvised least-square algorithm 

and the original shape of ECG signals were conserved in the 

regenerated signal .In [14],from abdominal ECG recordings, 

fetal ECG are separated using combination of fetal beat 

detection and compressive sensing theory based on sparse 

representation method. ICA based fECG extraction explained 

on [15], [16]. Using non-invasive fetal electrocardiogram (NI-

fECG), which is a hybrid method, the fetal ECG can be 

extracted [17]. 

In [18], different methods of multi-class SVM is 

differentiated and gives glorious executions. According to 

[19], a new model is presented for classifying arrhythmia 

patients into sixteen classes by utilising all three methods of 

Multi-class SVM like one-against-one, one-against-all and 

error-correction code, based on the ECG dataset taken from 

UCI machine learning repository. In [20], cardiac arrhythmia 

is pre-processed using wavelet transform and classified using 

LDA (Linear Discriminant Analysis) by reducing the 

dimension of features selected. In [21], authors proposed 

classification of ECG signals using multi model decision 

learning techniques and their results are compared with 

Neuro-fuzzy algorithm. 

Based on sensor networks, continuous monitoring of 

cardiac arrhythmia is possible [22], which shows advanced 

growth in wireless technology. The systems of fetal 

arrhythmias rely upon the age what's more, spread of electrical 

driving forces or we can say as electrical impulses. A strange 

drive can be created by the Sino-atrial node itself with an 

irregular heartbeats or on the other hand by a predominant 

inert pacemaker cell. According to [23], there exist variety of   

fetal arrhythmias like Premature Contractions, 

Tachyarrhythmia’s, Brady arrhythmias, Fetal Sinus and Low 

Atrial Bradycardias, Fetal AV Block, Sinus Bradycardia and 

Sinus Node Dysfunction, Low Atrial and Junctional Rhythm, 

Blocked Atrial Bigeminy, Congenital Long QT Syndrome, Ion 

Channelopathies, Familial Congenital AV Block. Based on 

[24], the fetal ventricles (right and left ventricles) were 

investigated in 12 fetal lambs (127-140 days gestation), which 

vary altogether in their outcome, when the reaction to changes 

in blood vessel pressure, and to the beginning of in utero 

ventilation. Using Color tissue Doppler imaging (CTDI) [25], 

assessment of fetal cardiovascular capacity is explained during 

the second phase of pregnancy and created reference ranges 

by utilizing a robotized strategy to examine CTDI readings 

from cardiac view.  

In [26], implementing Dual-gate Doppler (DD) technique 

in total of 133 pregnancies to measure fetal heart beat and 

determine reference ranges for normal fetuses. In [27], 

Doppler imaging is another method that can give estimations 

of myocardial development and timing of myocardial 

occasions and may conquer a portion of the inadequacies of 

ordinary procedures. The high time goal and its capacity to 

survey left and right cardiovascular capacity make tissue 

Doppler a great procedure for evaluating heart work in 

youngsters. The point of this audit is to give an exceptional 

outline of tissue Doppler strategies for the evaluation of 

cardiovascular capacity in the neonatal setting, with center 

around estimations from the atrio-ventricular (AV) plane. 

Novel quantitative proportions of function incorporate the 

appraisal of the speed of muscle tissue development during 

systole and diastole utilizing tissue Doppler speed imaging, 

and assessment of twisting and rotational qualities of the 

myocardium using dot following echocardiography or tissue 

Doppler-inferred strain imaging. A far reaching 

comprehension of these novel utilitarian modalities, their 

prescient worth, and impediments can significantly help with 

overseeing both the typical and maladaptive reactions in the 

infant time-period. The article [28], examines the novel and 

developing techniques for appraisal of left and right heart 

work in the neonatal population. 

III. METHODOLOGY 

 

The proposed system consist of following steps: 

 

 1. ECG signal acquisition 

 2. Pre-processing 

 3. Extraction of fetal ECG (fECG) 

 4. Classification using multi-class SVM 

 

 

 

Figure. 2:  Main Block Diagram of the proposed model 
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Fig.2 shows the main block diagram, which comprises of the 

raw ECG taken from Physionet cardiac arrhythmia database [9] 

is pre-processed and vital component (fECG) is extracted from 

the mixture of noises, interferences and mother ECG. From the 

extracted fetal ECG (fECG), required features are selected and 

based upon those details disease classification is done.Fig.3 

shows the flowchart of proposed method. Using WASOBI 

(Weight Adjusted Second Order Blind Identification) based 

BSS algorithm, the raw ECG is pre-processed and fetal ECG is 

extracted. Using peak detection algorithm, feature selection 

process is done, at which state logic machine is used for this 

purpose. After feature selection, fetal cardiac arrhythmia is 

classified into five different groups using mutli-class SVM. 

Here we classify Atrial Fibrillation, First Degree Block, WPW 

(Wolf Parkinson White) syndrome, Idioventricular Rhythm and 

Normal classes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure.3: Flowchart of proposed system 

A. Pre-processing 

 

 For this process, different filters like FIR, Butterworth filter 

and PCA were used, but accurate result was not obtained. 

Then we move forward to BSS (Blind source separation) 

algorithms like ICA, WASOBI, EFICA, and COMBI. The 

better performance was showed by WASOBI based BSS 

algorithm. The highlight of using this technique is not only 

extraction process, it also perform accurate pre-processing 

task. 

 

B. Fetal ECG (fECG) Extraction 

 

For Filtering and extraction of fetal ECG from mixture of 

components, WASOBI is implemented. WASOBI is an 

improved version of SOBI (Second Order Blind 

Identification) Algorithm. This algorithm reckon on second 

order data [29]. For that, it requires evaluating the following 

steps: 

 

1. Whitening process 

2. Estimation of Unitary Factor 

3. Joint Diagonalization (JD) 

 

Consider the linear and instantaneous Blind Source Separation 

(BSS) model as follows: 

x=As          (1) 

Where, x is the received signal, A is the mixing matrix and s is 

the original signal. The goal of using WASOBI method is to 

find the unmixing matrix (W).By using SOS (Second Order 

Statistics), a large number of cross co-relation matrices can be 

concurrently diagonalizable. Sources can be separated, at 

which a set of signals can be retrieved where only immediate 

linear mixtures are observed. Partition of sources comprises of 

recuperating a lot of signs of which just momentary straight 

blends are watched. The straight blend ought to be "aimlessly" 

prepared. This ordinarily happens in narrow band cluster 

preparing applications when the exhibit complex is obscure or 

misshaped. Time soundness of source signals are verified and 

fixed second order measurements with joint Diagonalization 

of co-variance frameworks is done. From the start, whitening 

of fetal signal is done and a unitary factor is discovered. The 

preprocessing of signal can be done by whitening process, 

which is achieved by Principal component analysis 

(PCA).According to [30], after the whitening process, 

computation of lagged correlation matrix is done at lag τ, 

given as: 

 

Rx[τ] = ARs[τ] A^H                 (2) 

 

Where, Rx is lagged correlation matrix, Rs is correlation 

matrix. From the lagged connection matrix, weighted matrix 

(W) is discovered by putting together the outcome with 

respect to connection among second and fourth order of 

Gaussian sources. At that point, joint diagolization is executed 

to get the unmixing matrix. If the computed correlation 

matrices are diagonal, which means the non-diagonal 

components are zero, the separated signals can be said to be 
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independent from each other. Therefore the Gaussian sources 

with various spectra can be impulsively isolated by utilizing 

second order insights. Thus the fetal component can be 

extracted. An enhancement for SOBI (Second Order Blind 

Identification) is gotten when the issue of diagonalization is 

changed over into weighted nonlinear least squares issue 

named as Weight Adjusted Second Order Blind Identication 

(WASOBI).Use of Daubechies wavelet of order 8, for the 

feature extraction has been justified in [31].Utilizing 

combination of Wavelet Transformation and FASTICA 

algorithm [32], the abdominal ECG recordings can be 

separated into maternal and fetal component. 

C. Feature Selection 

In the wake of removing fetal ECG (fECG) from mother 

ECG (mECG), now it required to distinguish the features. For 

recognizing the peaks and the component location, Peak 

Detection algorithm is used [33].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure.4: Flowchart of state machine logic algorithm 

 

This algorithm finds the areas and amplitudes signal. And 

peak discovery is finished by utilizing state machine logic; it 

set diverse edge values for various fragments of ECG. The 

highlight of peak detection algorithm is that, it makes weakest 

part of ECG to be strongest, then only selection part begins. If 

the watched signal example fulfilled the condition then that bit 

is put away as relating portion. ECG waveform contains P, Q, 

R, S, T waves based on working of heart activity. After 

distinguishing the fragments of ECG, the calculation 

quantifies the intervals like QR interval, RS interval, ST 

interval, Width of QRS complex and amplitudes of P, Q, R, S, 

T waves. Normal ECG has standard qualities for all of this, if 

it is anomalous then the previously mentioned highlights have 

various qualities relying on the variation from the 

normal.Figure.4 shows the detailed flowchart of state machine 

algorithm[33]. 

      At zero state, the product result of ‘m’ and an underlying 

weight (w=1.8) is determined. On the off chance that this item 

is not exactly the mean worth determined in a 15 example 

span (m1) from the one second interval, and furthermore if the 

amplitude of the examined test is bigger than the remainder of 

the examples, the amplitude and the area of the primary 

example from the one second window is put away as R peak; 

at that point, we change to condition of one, which reports the 

unmistakable presence of R peaks. 

       In condition of one (state one), the put away amplitude 

from zero state is contrasted and the following four examples, 

to guarantee that is the most extreme one. Each example in 

this window must be not as much as it’s past example. In the 

event that such a condition is forced, the file from zero state is 

put away as the R peak amplitude and its location. A span 

containing 0.04 s before this area until the area of this example 

is thought of, and least amplitude is accepted as Q top. 

Additionally, weight is refreshed in this state, which implies 

that if the quantity of recognized R peak is more than eight, 

0.3 of mean of these eight R peaks is accomplished and it is 

partitioned to m. at that point, the state will be equivalent to 

two. 

      In the condition of two (state two), if m1 is not as much as 

m, we change to condition of three for discovering S peak. 

The time of examination for condition of three is 0.2 s. In the 

event that, among the eight examples, the considered example 

is not exactly the remainder of the examples and if each 

example is not as much as its past example, we guarantee that 

the examined test is S. At that point, the state is equivalent to 

four. In the condition of four, if m1 is not as much as m, we 

change to condition of six for discovering T peaks. 

      In condition of six (state six), the examined timespan s is 

expected. The threshold is viewed as dependent on the 

ongoing estimations of S and m. In the event that m1 is more 

than this threshold, this condition is adequate for three back to 

back examples, and the pinnacle (peak) of the examined test is 

more than its consecutive eight examples (each example in 

this eight-example window ought to be littler than the past 

example), this example is put away as T peak and state is 

refreshed to six. State of six is for counteraction of finding a 

few R peak in a 0.4 s window. After this delay, the algorithm 

changes to zero state and this algorithm is repeated for each 

1second window. 
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D. Classification 

 

Before classification, filtered dataset is partitioned into 

training and testing set. According to [18], Multi-Class SVM 

(Support Vector Machine) has three well-known methods, they 

are: 

1. One-against-one (OAO) 

2. One-against-all (OAA) 

3. Error-correction code (ECC)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure.5: Support Vector Machine 

 

In this stage, a SVM-based classifier is used to train and predict 

with the feature vectors extracted from training and testing 

datasets. The algorithm uses two different datasets, which are 

the training dataset and testing dataset. 

Here, we use OAA-SVM for classification. It builds k SVM 

models where k is the quantity of classes. The mth SVM is 

prepared with the entirety of the models in the mth class with 

positive marks, and every other model with negative names. 

The fundamental idea driving SVM is to scan for a harmony 

between the regularization term and the preparation errors. 

Based on [34], the input preparing set x is relegated to the 

class that gives higher choice capacity esteem, such as: 

 

(Class of x) = (max ((W^k) ^T× ɸ_(x) + b^k))        (3)

  

Where, 

1 Vector in the feature space of training set is (W^k) ^T 

2 Kernel function is ɸ_(x) 

3 Training data set is (x) 

4 Scalar value is (b) 

 

 At the point when an input is acquired it analyse the 

component estimations of ECG information, which include 

estimations of both dataset having arrhythmia and not having 

arrhythmia and take the probabilities of having arrhythmia and 

not .If it appears abnormal, then the classifier orders the 

classification into various sorts of arrhythmia, dependent on 

the feature value obtained after feature selection process. 

IV. RESULTS & DISCUSSIONS 

In this section, experimental results are described.Table.I 

shows the mathematical validation of our proposed method 

and compared with  [35] and [36] methods. In [35], ICA 

algorithm were used for fetal ECG extraction and 

classification were exploited by Naïve Bayes classifier. In 

[36], fetal cardiac arrhythmia was detected by exploiting 

Kernel Support Vector Machine (SVM) classifier with 

Gaussian Kernel method. For extraction of fetal ECG, we 

compare two BSS based algorithms like WASOBI and 

EFICA(Efficient Fast Independant Component Analysis).The 

better performance is shown by the WASOBI based BSS 

technique having accuracy 95% ,sensitivity 87% and 

specificity 98% . 

EFICA (Efficient Fast Independant Component Analysis) is 

a modified version of Fast ICA (FICA).This algorithm joins 

rapidly as it looks for a part individually. But while 

implantation, this algorithm shows less accuracy on extraction 

of fetal ECG. Using WASOBI based BSS technique, 

accurately fetal components gets extracted and final 

classification process makes more easy and less time 

consumed.  

The right order or misclassification is evaluated by utilizing 

four metrics such as True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN).Accuracy can be 

defined as it characterized as the proportion of the quantity of 

effectively ordered examples (TP and TN) to the complete 

number of examples classified. Sensitivity is the pace of being 

test positive when infection present. Specificity is the pace of 

being test negative when disorder missing. 

The performance of Detection is evaluated by Accuracy, 

Sensitivity and Specificity.  
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TABLE I. Performance Measures 

 

 

 

Methods 

 

 

Quality Evaluation 

 

 

Accuracy 

 

 

Sensitivity 

 

Specificity 

 

 

[35] 

 

 

 

93.71% 

 

 

74.82% 

 

 

96.29% 

 

[36] 

 

83.33% 

 

75% 

 

 91.67% 

 

 

Proposed 

System 

with EFICA 

 

 

92% 

 

 

71% 

 

 

94% 

 

Proposed 

System 

with 

WASOBI 

 

 

95% 

 

 

87% 

 

 

97% 

 

 

By comparing all performance parameters, Accuracy, 

Sensitivity, Specificity, highest accuracy and specificity is 

shown by WASOBI. Specificity is inversely proportional to 

sensitivity. High specificity means, the method creates less 

false negatives. Based on all these criteria, the WASOBI based 

BSS method is better than EFICA version. 

 

 
 

Figure.6:  Input raw ECG signal 

 

Figure.6 describes the input raw ECG signal which is given 

to the Pre-processing and extraction step. The raw input signal 

contains club of fetal ECG, mother ECG and different noises. 

From this mixture, first noises are removed and maternal, fetal 

ECG are separated, which is shown in figure.7 

 

 

 

 

 

Figure. 7:  Separated fECG and mECG 

 

After separating the maternal and fetal component, the 

main element is fetal ECG, so we extract the fetal ECG only 

accurately by using the enhanced BSS technique. It is shown in 

figure.8. 

 

 
Figure. 8:  Extracted fetal ECG (fECG) 

 

 

After extraction process, the feature selection process is 

implemented using peak detection algorithm at which state 

logic machine technique is used. Here the required features are 

extracted for classification. It is shown in figure.9. 

 

 
Figure.9: Feature Selection 

 

 

The Feature vectors of five classifications obtained during 

feature selection process are QR interval, RS interval, ST 
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interval, width of QRS complex and Heart rate variability. 

Heart rate variability is the physiological phenomenon of 

variation in the time interval between heartbeats. It is measured 

by the variation in the beat-to-beat interval. The obtained datas 

are recorded in milli seconds (ms). In this paper, total nine 

feature vectors are selected for classification purpose. The 

obtained datas are recorded in milli volts (mv). 

 

 

 

V. CONCLUSION 

 

The target of this paper is to identify cardiovascular 

arrhythmia in fetus in the womb of mother during beginning 

phases of pregnancy. And classify the disease into five classes. 

The challenge is to precisely extricate fetal segment from the 

blend of signals and noises. Our proposed strategy viably 

overwhelm this, by executing WASOBI based BSS procedure 

and peak discovery calculation in extracted fECG. The 

outcome is classified by utilizing multi-class SVM. Our 

proposed method shows accuracy of 95%. 

 

 

VI. FUTURE SCOPE 

 

Practically, the source that has to be extracted can be 1D, 

2D or 3D. 1D refers to acoustic signals, 2D ate images, and 

3D can be volumetric data. The detection can also be 

extended, by using three dimensional signals. Cardiac 

Arrhythmia is detected based on the ECG analysis. 

Similarly, we can extend this work by analysing 

combination of ECG and EEG signals and maybe "Autism" 

a developmental disorder can be detected. 
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